Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 51 - 56 of 56 results
51.

Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase.

red LAPD CHO in vitro zebrafish in vivo Immediate control of second messengers
Proc Natl Acad Sci USA, 2 Jun 2014 DOI: 10.1073/pnas.1321600111 Link to full text
Abstract: Sensory photoreceptors elicit vital physiological adaptations in response to incident light. As light-regulated actuators, photoreceptors underpin optogenetics, which denotes the noninvasive, reversible, and spatiotemporally precise perturbation by light of living cells and organisms. Of particular versatility, naturally occurring photoactivated adenylate cyclases promote the synthesis of the second messenger cAMP under blue light. Here, we have engineered a light-activated phosphodiesterase (LAPD) with complementary light sensitivity and catalytic activity by recombining the photosensor module of Deinococcus radiodurans bacterial phytochrome with the effector module of Homo sapiens phosphodiesterase 2A. Upon red-light absorption, LAPD up-regulates hydrolysis of cAMP and cGMP by up to sixfold, whereas far-red light can be used to down-regulate activity. LAPD also mediates light-activated cAMP and cGMP hydrolysis in eukaryotic cell cultures and in zebrafish embryos; crucially, the biliverdin chromophore of LAPD is available endogenously and does not need to be provided exogenously. LAPD thus establishes a new optogenetic modality that permits light control over diverse cAMP/cGMP-mediated physiological processes. Because red light penetrates tissue more deeply than light of shorter wavelengths, LAPD appears particularly attractive for studies in living organisms.
52.

An optogenetic gene expression system with rapid activation and deactivation kinetics.

blue EL222 HEK293T Jurkat zebrafish in vivo Transgene expression
Nat Chem Biol, 12 Jan 2014 DOI: 10.1038/nchembio.1430 Link to full text
Abstract: Optogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range or slow activation and deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility. Our approach uses an engineered version of EL222, a bacterial light-oxygen-voltage protein that binds DNA when illuminated with blue light. The system has a large (>100-fold) dynamic range of protein expression, rapid activation (<10 s) and deactivation kinetics (<50 s) and a highly linear response to light. With this system, we achieve light-gated transcription in several mammalian cell lines and intact zebrafish embryos with minimal basal gene activation and toxicity. Our approach provides a powerful new tool for optogenetic control of gene expression in space and time.
53.

General method for regulating protein stability with light.

blue AsLOV2 NIH/3T3 zebrafish in vivo
ACS Chem Biol, 8 Nov 2013 DOI: 10.1021/cb400755b Link to full text
Abstract: Post-translational regulation of protein abundance in cells is a powerful tool for studying protein function. Here, we describe a novel genetically encoded protein domain that is degraded upon exposure to nontoxic blue light. We demonstrate that fusion proteins containing this domain are rapidly degraded in cultured cells and in zebrafish upon illumination.
54.

Blue light-mediated manipulation of transcription factor activity in vivo.

blue PixD/PixE zebrafish in vivo Developmental processes
ACS Chem Biol, 24 Sep 2013 DOI: 10.1021/cb400174d Link to full text
Abstract: We developed a novel technique for manipulating the activity of transcription factors with blue light (termed "PICCORO") using the bacterial BLUF-type photoreceptor protein PixD. The chimeric dominant-negative T-box transcription factor No Tail formed heterologous complexes with a PixD decamer in a light-dependent manner, and these complexes affected transcription repressor activity. When applied to zebrafish embryos, PICCORO permitted regulation of the activity of the mutant No Tail in response to 472-nm light provided by a light-emitting diode.
55.

Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish.

blue bPAC (BlaC) zebrafish in vivo Immediate control of second messengers Neuronal activity control
Front Neural Circuits, 6 May 2013 DOI: 10.3389/fncir.2013.00082 Link to full text
Abstract: The stress response is a suite of physiological and behavioral processes that help to maintain or reestablish homeostasis. Central to the stress response is the hypothalamic-pituitary-adrenal (HPA) axis, as it releases crucial hormones in response to stress. Glucocorticoids (GCs) are the final effector hormones of the HPA axis, and exert a variety of actions under both basal and stress conditions. Despite their far-reaching importance for health, specific GC effects have been difficult to pin-down due to a lack of methods for selectively manipulating endogenous GC levels. Hence, in order to study stress-induced GC effects, we developed a novel optogenetic approach to selectively manipulate the rise of GCs triggered by stress. Using this approach, we could induce both transient hypercortisolic states and persistent forms of hypercortisolaemia in freely behaving larval zebrafish. Our results also established that transient hypercortisolism leads to enhanced locomotion shortly after stressor exposure. Altogether, we present a highly specific method for manipulating the gain of the stress axis with high temporal accuracy, altering endocrine and behavioral responses to stress as well as basal GC levels. Our study offers a powerful tool for the analysis of rapid (non-genomic) and delayed (genomic) GC effects on brain function and behavior, feedbacks within the stress axis and developmental programming by GCs.
56.

Optogenetic control of transcription in zebrafish.

blue CRY2/CIB1 S. cerevisiae zebrafish in vivo
PLoS ONE, 30 Nov 2012 DOI: 10.1371/journal.pone.0050738 Link to full text
Abstract: Light inducible protein-protein interactions are powerful tools to manipulate biological processes. Genetically encoded light-gated proteins for controlling precise cellular behavior are a new and promising technology, called optogenetics. Here we exploited the blue light-induced transcription system in yeast and zebrafish, based on the blue light dependent interaction between two plant proteins, blue light photoreceptor Cryptochrome 2 (CRY2) and the bHLH transcription factor CIB1 (CRY-interacting bHLH 1). We demonstrate the utility of this system by inducing rapid transcription suppression and activation in zebrafish.
Submit a new publication to our database